Gian Antonio Susto
Gian Antonio Susto
Assistant Professor @ University of Padova, Co-founder @ Statwolf
Dirección de correo verificada de dei.unipd.it - Página principal
Título
Citado por
Citado por
Año
Machine learning for predictive maintenance: A multiple classifier approach
GA Susto, A Schirru, S Pampuri, S McLoone, A Beghi
IEEE Transactions on Industrial Informatics 11 (3), 812-820, 2014
4012014
Control of PDE-ODE cascades with Neumann interconnections
GA Susto, M Krstic
Journal of the Franklin Institute 347 (1), 284-314, 2010
1852010
Supervised aggregative feature extraction for big data time series regression
GA Susto, A Schirru, S Pampuri, S McLoone
IEEE Transactions on Industrial Informatics 12 (3), 1243-1252, 2015
522015
Multi-step virtual metrology for semiconductor manufacturing: A multilevel and regularization methods-based approach
GA Susto, S Pampuri, A Schirru, A Beghi, G De Nicolao
Computers & Operations Research 53, 328-337, 2015
472015
A predictive maintenance system for epitaxy processes based on filtering and prediction techniques
GA Susto, A Beghi, C De Luca
IEEE Transactions on Semiconductor Manufacturing 25 (4), 638-649, 2012
472012
Time-series classification methods: Review and applications to power systems data
GA Susto, A Cenedese, M Terzi
Big data application in power systems, 179-220, 2018
442018
A one-class svm based tool for machine learning novelty detection in hvac chiller systems
A Beghi, L Cecchinato, C Corazzol, M Rampazzo, F Simmini, GA Susto
IFAC Proceedings Volumes 47 (3), 1953-1958, 2014
412014
Anomaly detection approaches for semiconductor manufacturing
GA Susto, M Terzi, A Beghi
Procedia Manufacturing 11, 2018-2024, 2017
352017
Anomaly detection through on-line isolation forest: an application to plasma etching
GA Susto, A Beghi, S McLoone
2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC …, 2017
282017
Dealing with time-series data in predictive maintenance problems
GA Susto, A Beghi
2016 IEEE 21st International Conference on Emerging Technologies and Factory …, 2016
282016
Automatic control and machine learning for semiconductor manufacturing: Review and challenges
GA Susto, S Pampuri, A Schirru, G De Nicolao, SF McLoone, A Beghi
Proceedings of the 10th European Workshop on Advanced Control and Diagnosis …, 2012
272012
A virtual metrology system for predicting cvd thickness with equipment variables and qualitative clustering
GA Susto, A Beghi, C De Luca
ETFA2011, 1-4, 2011
242011
A predictive maintenance system for silicon epitaxial deposition
GA Susto, A Beghi, C De Luca
2011 IEEE International Conference on Automation Science and Engineering …, 2011
242011
A predictive maintenance system based on regularization methods for ion-implantation
GA Susto, A Schirru, S Pampuri, A Beghi
2012 SEMI Advanced Semiconductor Manufacturing Conference, 175-180, 2012
232012
Home automation oriented gesture classification from inertial measurements
A Cenedese, GA Susto, G Belgioioso, GI Cirillo, F Fraccaroli
IEEE Transactions on automation science and engineering 12 (4), 1200-1210, 2015
222015
A virtual metrology system based on least angle regression and statistical clustering
GA Susto, A Beghi
Applied Stochastic Models in Business and Industry 29 (4), 362-376, 2013
222013
Least angle regression for semiconductor manufacturing modeling
GA Susto, A Beghi
2012 IEEE International Conference on Control Applications, 658-663, 2012
222012
Multistep virtual metrology approaches for semiconductor manufacturing processes
S Pampuri, A Schirru, GA Susto, C De Luca, A Beghi, G De Nicolao
Automation Science and Engineering (CASE), 2012 IEEE International …, 2012
222012
A convolutional autoencoder approach for feature extraction in virtual metrology
M Maggipinto, C Masiero, A Beghi, GA Susto
Procedia Manufacturing 17, 126-133, 2018
212018
Learning from time series: Supervised aggregative feature extraction
A Schirru, GA Susto, S Pampuri, S McLoone
2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 5254-5259, 2012
212012
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20