Machine learning design patterns V Lakshmanan, S Robinson, M Munn O'Reilly Media, 2020 | 166 | 2020 |
COT-GAN: Generating Sequential Data via Causal Optimal Transport T Xu, LK Wenliang, M Munn, B Acciaio Advances in Neural Information Processing Systems 33, 2020 | 107 | 2020 |
On the appearance of Eisenstein series through degeneration D Garbin, J Jorgenson, M Munn Commentarii mathematici helvetici 83 (4), 701-721, 2008 | 29 | 2008 |
Why neural networks find simple solutions: the many regularizers of geometric complexity B Dherin, M Munn, M Rosca, D Barrett Advances in Neural Information Processing Systems 36, 2022 | 27 | 2022 |
Explainable AI for Practitioners: Designing and Implementing Explainable ML Solutions M Munn, D Pitman O'Reilly Media, Inc, 2022 | 19 | 2022 |
Three-dimensional Alexandrov spaces with positive or nonnegative Ricci curvature Q Deng, F Galaz-García, L Guijarro, M Munn Potential Analysis 48, 223-238, 2018 | 12 | 2018 |
Volume growth and the topology of manifolds with nonnegative Ricci curvature M Munn Journal of Geometric Analysis 20, 723-750, 2010 | 12 | 2010 |
Intrinsic flat convergence with bounded Ricci curvature M Munn arXiv preprint arXiv:1405.3313, 2014 | 10 | 2014 |
Geometric singularities and a flow tangent to the Ricci flow L Bandara, S Lakzian, M Munn arXiv preprint arXiv:1505.05035, 2015 | 9 | 2015 |
The geometric occam's razor implicit in deep learning B Dherin, M Munn, DGT Barrett arXiv preprint arXiv:2111.15090, 2021 | 7 | 2021 |
Alexandrov spaces with large volume growth M Munn Journal of Mathematical Analysis and Applications 419 (1), 525-540, 2014 | 7 | 2014 |
Super Ricci flow for disjoint unions S Lakzian, M Munn arXiv preprint arXiv:1211.2792, 2012 | 5 | 2012 |
On Weak Super Ricci Flow through Neckpinch S Lakzian, M Munn Analysis and Geometry in Metric Spaces 9 (1), 120-159, 2021 | 3 | 2021 |
Metric Perspectives of the Ricci Flow Appliedto Disjoint Unions S Lakzian, M Munn Analysis and Geometry in Metric Spaces 2 (1), 20141011, 2014 | 3 | 2014 |
Volume growth and the topology of pointed Gromov–Hausdorff limits M Munn Differential Geometry and its Applications 28 (5), 532-542, 2010 | 3 | 2010 |
A margin-based multiclass generalization bound via geometric complexity M Munn, B Dherin, J Gonzalvo Topological, Algebraic and Geometric Learning Workshops 2023, 189-205, 2023 | 1 | 2023 |
Unified functional hashing in automatic machine learning R Gillard, S Jonany, Y Miao, M Munn, C de Souza, J Dungay, C Liang, ... arXiv preprint arXiv:2302.05433, 2023 | 1 | 2023 |
Design Patterns für Machine Learning: Entwurfsmuster für Datenaufbereitung, Modellbildung und MLOps V Lakshmanan, S Robinson, M Munn o'Reilly, 2021 | 1 | 2021 |
The Impact of Geometric Complexity on Neural Collapse in Transfer Learning M Munn, B Dherin, J Gonzalvo arXiv preprint arXiv:2405.15706, 2024 | | 2024 |
机器学习设计模式 V Lakshmanan, S Robinson, M Munn Dong nan da xue chu ban she= Southeast University Press, 2022 | | 2022 |