Follow
Christopher Kuenneth
Christopher Kuenneth
Other namesChristopher Künneth, Chris Kuenneth
Assistant Professor, University of Bayreuth
Verified email at uni-bayreuth.de - Homepage
Title
Cited by
Cited by
Year
The origin of ferroelectricity in Hf1− xZrxO2: A computational investigation and a surface energy model
R Materlik, C Künneth, A Kersch
Journal of Applied Physics 117 (13), 2015
8102015
Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors
M Hoffmann, U Schroeder, C Künneth, A Kersch, S Starschich, U Böttger, ...
Nano Energy 18, 154-164, 2015
2342015
Polymer informatics: Current status and critical next steps
L Chen, G Pilania, R Batra, TD Huan, C Kim, C Kuenneth, R Ramprasad
Materials Science and Engineering: R: Reports 144, 100595, 2021
1982021
Thermodynamics of Phase Stability and Ferroelectricity From First Principles
C Künneth, R Batra, GAJ Rossetti, R Ramprasad, A Kersch
Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices …, 2019
166*2019
Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells
H Mulaosmanovic, S Slesazeck, J Ocker, M Pesic, S Muller, S Flachowsky, ...
2015 IEEE International Electron Devices Meeting (IEDM), 26.8. 1-26.8. 3, 2015
1552015
Domain pinning: Comparison of hafnia and PZT based ferroelectrics
FPG Fengler, M Pešić, S Starschich, T Schneller, C Künneth, U Böttger, ...
Advanced Electronic Materials 3 (4), 1600505, 2017
1302017
Al-, Y-, and La-doping effects favoring intrinsic and field induced ferroelectricity in HfO2: A first principles study
R Materlik, C Künneth, M Falkowski, T Mikolajick, A Kersch
Journal of Applied Physics 123 (16), 2018
1262018
On the Origin of the Large Remanent Polarization in La:HfO2
T Schenk, CM Fancher, MH Park, C Richter, C Künneth, A Kersch, ...
Advanced Electronic Materials 5 (12), 1900303, 2019
1132019
Polymer informatics with multi-task learning
C Kuenneth, AC Rajan, H Tran, L Chen, C Kim, R Ramprasad
Patterns 2 (4), 100238, 2021
892021
Impact of Four-Valent Doping on the Crystallographic Phase Formation for Ferroelectric HfO2 from First-Principles: Implications for Ferroelectric Memory and …
C Künneth, R Materlik, M Falkowski, A Kersch
ACS Applied Nano Materials 1 (1), 254-264, 2017
812017
polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics
C Kuenneth, R Ramprasad
Nature Communications 14 (1), 4099, 2023
672023
Modeling ferroelectric film properties and size effects from tetragonal interlayer in Hf1–xZrxO2 grains
C Künneth, R Materlik, A Kersch
Journal of Applied Physics 121 (20), 2017
662017
Copolymer informatics with multitask deep neural networks
C Kuenneth, W Schertzer, R Ramprasad
Macromolecules 54 (13), 5957-5961, 2021
652021
A computational study of hafnia-based ferroelectric memories: From ab initio via physical modeling to circuit models of ferroelectric device
M Pešić, C Künneth, M Hoffmann, H Mulaosmanovic, S Müller, ET Breyer, ...
Journal of computational Electronics 16, 1236-1256, 2017
572017
A general-purpose material property data extraction pipeline from large polymer corpora using natural language processing
P Shetty, AC Rajan, C Kuenneth, S Gupta, LP Panchumarti, L Holm, ...
npj Computational Materials 9 (1), 52, 2023
48*2023
The impact of charge compensated and uncompensated strontium defects on the stabilization of the ferroelectric phase in HfO2
R Materlik, C Künneth, T Mikolajick, A Kersch
Applied Physics Letters 111 (8), 2017
402017
Polymer informatics at scale with multitask graph neural networks
R Gurnani, C Kuenneth, A Toland, R Ramprasad
Chemistry of Materials 35 (4), 1560-1567, 2023
342023
Bioplastic design using multitask deep neural networks
C Kuenneth, J Lalonde, BL Marrone, CN Iverson, R Ramprasad, G Pilania
Communications Materials 3 (1), 96, 2022
302022
Unexpectedly large energy variations from dopant interactions in ferroelectric HfO2 from high-throughput ab initio calculations
M Falkowski, C Künneth, R Materlik, A Kersch
npj Computational Materials 4 (1), 73, 2018
262018
An efficient deep learning scheme to predict the electronic structure of materials and molecules: The example of graphene-derived allotropes
BG Del Rio, C Kuenneth, HD Tran, R Ramprasad
The Journal of Physical Chemistry A 124 (45), 9496-9502, 2020
232020
The system can't perform the operation now. Try again later.
Articles 1–20