Follow
David Montes de Oca Zapiain
Title
Cited by
Cited by
Year
Accelerating phase-field-based microstructure evolution predictions via surrogate models trained by machine learning methods
D Montes de Oca Zapiain, JA Stewart, R Dingreville
npj Computational Materials 7 (1), 3, 2021
1662021
FitSNAP: Atomistic machine learning with LAMMPS
A Rohskopf, C Sievers, N Lubbers, MA Cusentino, J Goff, J Janssen, ...
Journal of Open Source Software 8 (84), 5118, 2023
362023
Training data selection for accuracy and transferability of interatomic potentials
D Montes de Oca Zapiain, MA Wood, N Lubbers, CZ Pereyra, ...
npj Computational Materials 8 (1), 189, 2022
332022
Microscopic and macroscopic characterization of grain boundary energy and strength in silicon carbide via machine-learning techniques
M Guziewski, D Montes de Oca Zapiain, R Dingreville, SP Coleman
ACS Applied Materials & Interfaces 13 (2), 3311-3324, 2021
282021
Predicting plastic anisotropy using crystal plasticity and Bayesian neural network surrogate models
DM de Oca Zapiain, H Lim, T Park, F Pourboghrat
Materials Science and Engineering: A 833, 142472, 2022
232022
Prediction of microscale plastic strain rate fields in two-phase composites subjected to an arbitrary macroscale strain rate using the materials knowledge system framework
DM de Oca Zapiain, E Popova, SR Kalidindi
Acta Materialia 141, 230-240, 2017
212017
Reduced-order microstructure-sensitive models for damage initiation in two-phase composites
D Montes de Oca Zapiain, E Popova, F Abdeljawad, JW Foulk, ...
Integrating Materials and Manufacturing Innovation 7, 97-115, 2018
192018
Characterizing the tensile strength of metastable grain boundaries in silicon carbide using machine learning
D Montes de Oca Zapiain, M Guziewski, SP Coleman, R Dingreville
The Journal of Physical Chemistry C 124 (45), 24809-24821, 2020
182020
Localization models for the plastic response of polycrystalline materials using the material knowledge systems framework
DM de Oca Zapiain, SR Kalidindi
Modelling and Simulation in Materials Science and Engineering 27 (7), 074008, 2019
182019
Texture-sensitive prediction of micro-spring performance using Gaussian process models calibrated to finite element simulations
A Venkatraman, DM de Oca Zapiain, H Lim, SR Kalidindi
Materials & Design 197, 109198, 2021
122021
Convolutional neural networks for the localization of plastic velocity gradient tensor in polycrystalline microstructures
D Montes de Oca Zapiain, A Shanker, SR Kalidindi
Journal of Engineering Materials and Technology 144 (1), 011004, 2022
82022
Establishing a data-driven strength model for β-tin by performing symbolic regression using genetic programming
DM de Oca Zapiain, JMD Lane, JD Carroll, Z Casias, CC Battaile, ...
Computational Materials Science 218, 111967, 2023
72023
Training data selection for accuracy and transferability of interatomic potentials. npj Comput
D Montes de Oca Zapiain, MA Wood, N Lubbers, CZ Pereyra, ...
Mater 8 (1), 189, 2022
72022
Reduced-order models for ranking damage initiation in dual-phase composites using Bayesian neural networks
A Venkatraman, D Montes de Oca Zapiain, SR Kalidindi
JOM 72, 4359-4369, 2020
62020
Accelerating fem-based corrosion predictions using machine learning
DM de Oca Zapiain, D Maestas, M Roop, P Noel, M Melia, R Katona
Journal of The Electrochemical Society 171 (1), 011504, 2024
52024
Development of a deep learning model for capturing plastic anisotropy–texture linkage
T Park, D Montes de Oca Zapiain, F Pourboghrat, H Lim
JOM 75 (12), 5466-5478, 2023
42023
Solidification and crystallographic texture modeling of laser powder bed fusion Ti-6Al-4V using finite difference-monte carlo method
BC Whitney, TM Rodgers, AG Spangenberger, AA Rezwan, ...
Materialia 38, 102279, 2024
32024
Neural network ensembles and uncertainty estimation for predictions of inelastic mechanical deformation using a finite element method-neural network approach
GL Bergel, DM de Oca Zapiain, V Romero
Data-Centric Engineering 4, e23, 2023
32023
An active learning framework for the rapid assessment of galvanic corrosion
A Venkatraman, RM Katona, D Maestas, M Roop, P Noell, ...
npj Materials Degradation 8 (1), 54, 2024
22024
Investigating the orientation dependence of local fields around spherical defects using crystal plasticity simulations
NK Aragon, AA Rezwan, DM de Oca Zapiain, H Lim
Journal of Materials Research and Technology 33, 235-243, 2024
12024
The system can't perform the operation now. Try again later.
Articles 1–20