Sheng Lin
Sheng Lin
Tencent America
Dirección de correo verificada de
Citado por
Citado por
A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning
N Liu, Z Li, J Xu, Z Xu, S Lin, Q Qiu, J Tang, Y Wang
2017 IEEE 37th International Conference on Distributed Computing Systems …, 2017
Patdnn: Achieving real-time dnn execution on mobile devices with pattern-based weight pruning
W Niu, X Ma, S Lin, S Wang, X Qian, X Lin, Y Wang, B Ren
Proceedings of the Twenty-Fifth International Conference on Architectural …, 2020
Progressive dnn compression: A key to achieve ultra-high weight pruning and quantization rates using admm
S Ye, X Feng, T Zhang, X Ma, S Lin, Z Li, K Xu, W Wen, S Liu, J Tang, ...
arXiv preprint arXiv:1903.09769, 2019
FFT-based deep learning deployment in embedded systems
S Lin, N Liu, M Nazemi, H Li, C Ding, Y Wang, M Pedram
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE …, 2018
Tiny but accurate: A pruned, quantized and optimized memristor crossbar framework for ultra efficient dnn implementation
X Ma, G Yuan, S Lin, C Ding, F Yu, T Liu, W Wen, X Chen, Y Wang
2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), 301-306, 2020
ADMM-based weight pruning for real-time deep learning acceleration on mobile devices
H Li, N Liu, X Ma, S Lin, S Ye, T Zhang, X Lin, W Xu, Y Wang
Proceedings of the 2019 on Great Lakes Symposium on VLSI, 501-506, 2019
Rtmobile: Beyond real-time mobile acceleration of rnns for speech recognition
P Dong, S Wang, W Niu, C Zhang, S Lin, Z Li, Y Gong, B Ren, X Lin, ...
2020 57th ACM/IEEE Design Automation Conference (DAC), 1-6, 2020
ResNet Can Be Pruned 60×: Introducing Network Purification and Unused Path Removal (P-RM) after Weight Pruning
X Ma, G Yuan, S Lin, Z Li, H Sun, Y Wang
2019 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), 1-2, 2019
Toward Extremely Low Bit and Lossless Accuracy in DNNs with Progressive ADMM
S Lin, X Ma, S Ye, G Yuan, K Ma, Y Wang
ICML workshop arXiv preprint arXiv:1905.00789, 2019
An ultra-efficient memristor-based dnn framework with structured weight pruning and quantization using admm
G Yuan, X Ma, C Ding, S Lin, T Zhang, ZS Jalali, Y Zhao, L Jiang, ...
2019 IEEE/ACM International Symposium on Low Power Electronics and Design …, 2019
An image enhancing pattern-based sparsity for real-time inference on mobile devices
X Ma, W Niu, T Zhang, S Liu, S Lin, H Li, W Wen, X Chen, J Tang, K Ma, ...
European Conference on Computer Vision, 629-645, 2020
Reconfigurable thermoelectric generators for vehicle radiators energy harvesting
D Baek, C Ding, S Lin, D Shin, J Kim, X Lin, Y Wang, N Chang
2017 IEEE/ACM International Symposium on Low Power Electronics and Design …, 2017
Non-Structured DNN Weight Pruning–Is It Beneficial in Any Platform?
X Ma, S Lin, S Ye, Z He, L Zhang, G Yuan, S Huat Tan, Z Li, D Fan, X Qian, ...
TNNLS, arXiv: 1907.02124, 2019
Dynamic Reconfiguration of Thermoelectric Generators for Vehicle Radiators Energy Harvesting Under Location-Dependent Temperature Variations
J Kim, D Baek, C Ding, S Lin, D Shin, X Lin, Y Wang, YH Cho, SH Park, ...
Learning topics using semantic locality
Z Zhao, K Pugdeethosapol, S Lin, Z Li, C Ding, Y Wang, Q Qiu
2018 24th International Conference on Pattern Recognition (ICPR), 3710-3715, 2018
NS-KWS: joint optimization of near-sensor processing architecture and low-precision GRU for always-on keyword spotting
Q Li, S Lin, C Liu, Y Liu, F Qiao, Y Wang, H Yang
Proceedings of the ACM/IEEE International Symposium on Low Power Electronics …, 2020
DARB: A Density-Adaptive Regular-Block Pruning for Deep Neural Networks
R Ao, Z Tao, W Yuhao, L Sheng, D Peiyan, C Yen-kuang, X Yuan, ...
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 5495-5502, 2020
When sorting network meets parallel bitstreams: a fault-tolerant parallel ternary neural network accelerator based on stochastic computing
Y Zhang, S Lin, R Wang, Y Wang, Y Wang, W Qian, R Huang
2020 Design, Automation & Test in Europe Conference & Exhibition (DATE …, 2020
ESMFL: Efficient and Secure Models for Federated Learning
S Lin, C Wang, H Li, J Deng, Y Wang, C Ding
arXiv preprint arXiv:2009.01867, 2020
A SOT-MRAM-based Processing-In-Memory Engine for Highly Compressed DNN Implementation
G Yuan, X Ma, S Lin, Z Li, C Ding
arXiv preprint arXiv:1912.05416, 2019
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20