Follow
Maria Nadejde
Maria Nadejde
Amazon AWS AI
Verified email at amazon.com - Homepage
Title
Cited by
Cited by
Year
Nematus: a toolkit for neural machine translation
R Sennrich, O Firat, K Cho, A Birch, B Haddow, J Hitschler, ...
arXiv preprint arXiv:1703.04357, 2017
4112017
Predicting Target Language CCG Supertags Improves Neural Machine Translation
M Nadejde, S Reddy, R Sennrich, T Dwojak, M Junczys-Dowmunt, ...
Second Conference on Machine Translation 1, 68--79, 2017
86*2017
Findings of the IWSLT 2022 Evaluation Campaign
A Anastasopoulos, L Barrault, L Bentivogli, MZ Boito, O Bojar, R Cattoni, ...
Proceedings of the 19th International Conference on Spoken Language …, 2022
382022
Edinburgh’s syntax-based systems at wmt 2015
P Williams, R Sennrich, M Nadejde, M Huck, P Koehn
Proceedings of the Tenth Workshop on Statistical Machine Translation, 199-209, 2015
342015
Edinburgh’s Statistical Machine Translation Systems for WMT16
P Williams, R Sennrich, M Nadejde, M Huck, B Haddow, O Bojar
Proceedings of the First Conference on Machine Translation, Berlin, Germany …, 2016
292016
Enabling Robust Grammatical Error Correction in New Domains: Datasets, Metrics, and Analyses
C Napoles, M Nadejde, J Tetreault
Transactions of the Association for Computational Linguistics 7, 551-566, 2019
202019
The feasibility of HMEANT as a human MT evaluation metric
A Birch, B Haddow, U Germann, M Nadejde, C Buck, P Koehn
Proceedings of the Eighth Workshop on Statistical Machine Translation, 52-61, 2013
182013
Edinburgh’s syntax-based machine translation systems
M Nadejde, P Williams, P Koehn
Proceedings of the Eighth Workshop on Statistical Machine Translation, 170-176, 2013
182013
Personalizing Grammatical Error Correction: Adaptation to Proficiency Level and L1
M Nadejde, J Tetreault
The 5th Workshop on Noisy User-generated Text (W-NUT), 2019
162019
Eu-bridge mt: Combined machine translation
M Freitag, S Peitz, J Wuebker, H Ney, M Huck, R Sennrich, N Durrani, ...
Proceedings of the Ninth Workshop on Statistical Machine Translation, 105-113, 2014
162014
Modeling Selectional Preferences of Verbs and Nouns in String-to-Tree Machine Translation
M Nadejde, A Birch, P Koehn
Proceedings of the First Conference on Machine Translation, 32--42, 2016
72016
CoCoA-MT: A Dataset and Benchmark for Contrastive Controlled MT with Application to Formality
M Nădejde, A Currey, B Hsu, X Niu, M Federico, G Dinu
NAACL, 2022
42022
Sockeye 3: Fast Neural Machine Translation with PyTorch
F Hieber, M Denkowski, T Domhan, BD Barros, CD Ye, X Niu, C Hoang, ...
arXiv preprint arXiv:2207.05851, 2022
22022
A Neural Verb Lexicon Model with Source-side Syntactic Context for String-to-Tree Machine Translation
M Nadejde, A Birch, P Koehn
Proceedings of the International Workshop on Spoken Language Translation (IWSLT), 2016
22016
A baseline revisited: Pushing the limits of multi-segment models for context-aware translation
S Majumde, S Lauly, M Nadejde, M Federico, G Dinu
arXiv preprint arXiv:2210.10906, 2022
12022
Proficiency and native language-adapted grammatical error correction
M Nadejde, J Tetreault
US Patent App. 16/807,123, 2021
12021
Syntactic and semantic features for statistical and neural machine translation
M Nadejde
The University of Edinburgh, 2018
12018
MT-GenEval: A counterfactual and contextual dataset for evaluating gender accuracy in machine translation
A Currey, M Nădejde, R Pappagari, M Mayer, S Lauly, X Niu, B Hsu, ...
arXiv preprint arXiv:2211.01355, 2022
2022
Edinburgh’s Syntax-Based Systems at WMT 2014
P Williams, R Sennrich, M Nadejde, M Huck, E Hasler, P Koehn
Proc. of the Ninth Workshop on Statistical Machine Translation (WMT …, 2014
2014
The system can't perform the operation now. Try again later.
Articles 1–19